THERMAL REACTIONS OF BENZOSILACYCLOBUTENES WITH ALCOHOLS

Kyung-Tae Kang[†], Hee-Chan Seo, and Kwang-Nam Kim

Department of Chemical Education, College of Education, Pusan National University, Tongnae-Ku, Pusan 607, Korea

ABSTRACT

In the thermal reaction with alcohols, benzosilacyclobutenes underwent both benzylsilicon and aryl-silicon bond rupture to yield (dialkyl)alkoxy-o-tolylsilanes and (dialkyl)-alkoxybenzylsilanes, respectively.

Benzocyclobutenes undergo thermal and photochemical ring opening to highly reactive \underline{o} -quinonoid intermediates. The analogous ring opening of benzosilacyclobutenes ($\underline{1}$) to \underline{o} -silaquinone methides ($\underline{2}$), however, has not been reported. $\underline{2}$

Eaborn <u>et al.</u> found (dimethyl)methoxy- \underline{o} -tolylsilane $\underline{4a}$ as the only product in the pyrolytic reaction of 1,1-dimethyl-2,3-benzo-1-silacyclo-2-butene ($\underline{3a}$, R=Me) in neutral methanol.

In contrast we find that benzosilacyclobutenes $(\underline{1})^4$ react thermally with methanol and other alcohols to produce, not only (dialkyl)alkoxy-o-tolylsilanes ($\underline{3}a$ -j) but also (dialkyl)-alkoxybenzylsilane ($\underline{4}a$ -j). These latter products result from aryl-silicon bond cleavage. Both the substituents on silicon and the particular alcohol affect the ratio of $\underline{3}$ to $\underline{4}$. Ethanol and i-propanol favor formation of aryl-Si cleavage products 4.

Table: Thermal reaction of benzosilacyclobutenes in alcohols.

	R		Ratio of Products a		Tota1
Entry		R¹	<u>3</u>	: <u>4</u>	Yield (%)
a	Me	Me	70	30	100
b	Ph	Me	85	15	100
С	Et	Me	70	30	100
d	<u>i</u> -Pr	Me	70	30	98
e	<u>t</u> -Bu	Me**	70	30	57
f	Me	Et	20	80	89
g	Ph	Et	15	85	93
h	Et	Et	0	100	81
i	Me	<u>i</u> -Pr	0	100	68
j	Et	<u>i</u> -Pr	0	100	68

^{*} See note 5.

Methanolic sodium methoxide was used instead of methanol.

The thermal reaction of benzosilacyclobutenes with alcohols is thought to proceed initially via pentavalent coordinate silicon intermediates ($\underline{5}$). The formation of $\underline{3}$ may involve an $\underline{0}$ -silaquinone methide intermediate which is efficiently trapped by alcohol while the formation of $\underline{4}$ must result from a protodesilation pathway. The factors affecting the ratio of $\underline{3}$ to $\underline{4}$ are under further study.

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

We thank Professor N. Inamoto and R. Okazaki at the University of Tokyo, Japan, for friendly advice. Financial support from Korea Science and Engineering Foundation is greatly acknowledged.

References and Notes

- For reviews, see: R. Okazaki, Yuki Gosei Kagaku Kyokai Shi, 34, 439 (1976); W. Oppolzer, Synthesis, 1978, 793; R.L. Funk and K.P.C. Vollhardt, Chem. Soc. Rev., 9, 41 (1980);
 T. Kametani and H. Nemoto, Tetrahedron, 37, 3 (1981).
- Intermediacy of <u>o</u>-silaquinone methide was proposed in the thermolysis of tetramesityldisilene to a benzosilacyclobutene. M.J. Fink, D.J. DeYoung, R. West and J. Michl, J. Am. Chem. Soc., 105, 1070 (1983).
- 3. C. Eaborn, D.R.M. Walton and M. Chan, J. Organometal. Chem., 9, 251 (1967).
- 4. K.-T. Kang, H.Y. Song and H.C. Seo, Chem. Lett., 1985, 617.
- 5. The ratio of isomeric products was determined from the integration of aryl-methyl protons in $\underline{3}$ and benzyl protons in $\underline{4}$: for example, $\underline{3c}$, NMR (CCl₄, δ) 0.8-1.1 (10H, m), 2.40 (3H, s), 3.39 (3H, s), and 6.8-7.4 (4H, m); $\underline{4c}$, NMR (CCl₄, δ) 0.8-1.1 (10H, m), 2.10 (2H, s), 3.33 (3H, s), and 6.8-7.4 (6H, m). MS: $\underline{3c}$: m/e 208 (M⁺, 9%), 179 (100), 151 (65), 121 (25), 105 (30); $\underline{4c}$, m/e 208 (M⁺, 11%), 151 (10), 117 (100), 89 (82).
- M. Ishikawa, T. Fuchikami and M. Kumada, J. Organometal. Chem., <u>118</u>, 155 (1976); idem, <u>ibid.</u>, <u>149</u>, 37 (1978); M. Ishikawa, H. Sugisawa, K. Yamamoto and M. Kumada, <u>ibid.</u>, <u>179</u>, 377 (1979); D. Tzeng, R.H. Fong, H.S.D. Soysa and W.P. Weber, <u>ibid.</u>, <u>219</u>, 153 (1981).
 (Received in Japan 9 July 1985)